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DIFFRACTION OF A SUPERCOMPRESSED DETONATION WAVE REGULARLY REFLECTED FROM 
THE WALL OF AN OBTUSE WEDGE* 

S.M. TER-MINASYANTS and S.M. UHMAMBETOV 

The problem of the diffraction of a supercompressed detonation wave 
representing the regular reflection of a plane shock wave, by a corner of 
a wall turned by a small angle E is solved. The properties of the medium, 
the intensity and the angle of incidence of the shock wave are assumed 
to be such that the front does not cause a detonation, while the reflected 
front initiates it and causes it to disappear. An exact solution is 
constructed differing from the solutions for the shock wave /l, 2/ only 
in more complicated expressions for the parameters appearing in it and 
expressed in terms of the parameters of the regular unperturbed reflection 
/3/. 

The intensity of the incident front, which can be arbitrary when there is no heat supply, 
is related to the heat supply when it occurs, just as the other parameters, by the condition 
of admissibility of solutions of the given type. This is caused by the complications which 
arise whenever two small parameters are present simultaneously, the second of which may be 
represented by the degree of overcompression I(O<L<I). However, when L is finite, the con- 
dition does not result in any constraints and the intensity remains arbitrary. 

The solutions can be radically simplified for the values of the defining parameters which 
admit of solutions of the given type, by expanding them in series in powers of t near the 
value L = 0, even though they have no meaning for this value of 1. Only the linear terms are 
retained. The pressure along the front, its form and the pressure exerted on the wall, are 
given in a simple, easily perceived form, and the latter is represented by expressions of the 
same type as those for the diffraction of an acoustic wave (with additional terms). 

The simplified solutions are also close to exact solutions for moderate and finite 1. 
They can therefore be regarded as approximate solutions for supercompressed detonation waves 
of any intensity. 

The diffractionofa detonation wave in which the heat supply was a small quantity, was 
studied earlier in /4/. 

1. The flow pattern. A plane shock wave front propagating through a hot mixture of 
gases impinges at a finite angle a on a rigid wall and is reflected regularly from it. 
Combination in the reflected supercompressed detonation front takes place instantaneously. 
Such reflection was discussed in /3/. In order to be able to neglect the non-linear effects 
/5/ we shall assume that the magnitude of the angle a is outside the immediate neighbourhood 
of its maximum possible value for a regular reflection. 

At the instant t = 0 the point of reflection N (Fig.1) passes through the corner point 
H at which the wall changes its direction by a small angle e (E> 0 if the corner is convex). 
The region of inhomogeneous flow ABCDEF which lies behind the curved reflected front and 
is bounded by the front, the wall and the arcs of the Mach circle (whose centre lies at the 
particle appearing at the point N at t=O), begins to expand. The region of inhomogeneous 
flow lies next to the homogeneous flows and is separated from them by the arcs CD and AF (or 

AG and GF). The point H may appear within this region, as well as outside it (N'). In the 
latter case a region of homogeneous flow, namely of the supersonic flow past the corner in the 
wall FGH’, lies next to it. The corresponding cases of diffraction are called the subsonic 
and supersonic cases. 

The motion in question represents a small perturbation of the homogeneous stream of the 
reacting mixture of gases behind a plane reflected front inclined to the wall at a finite angle 
Y. The linearized boundary conditions are referred to the contour ABCDEF containing the 
segment ABC of the unperturbed reflected front. 

The regions of various homogeneous flows are indicated in Fig.1 by the numbers 0 - 4, 
andthepressure p, density p, velocity of sound a, and the polytropic exponent x relating 
to those regions are marked by the corresponding subscripts (x0 =x1, XP =x3 =x2). We denote 
the velocities of the incident and reflected front relative to the media in front of them, by 
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Fig.1 

The evolution of heat in a detonation front is characterized by the quantity Q, in terms 
of which we express the heat generating capacity of the gaseous mixture a,"Q/(x, - 1) andvelocity 
U, = a,MJ of propagation of the detonation front in the Chapman-Jouget mode, and 

MJ = Q’d’? t_ (Q. + ?)“’ = (%!‘i’ M, 

Q,=+*[(%2- l)Q$- yq 

(1.1) 

Let us introduce the parameter 1 representing the degree of supercompression of the 
detonation wave 

L'= (Md2 - Mj2) (Mdz - M;‘) (Mds - I)-* (1.2) 

When x1=x*, (1.2) is reduced to l4 = 1 - QIQJ where QJ corresponds to I == 0. 
The defining parameters do not include a characteristic linear dimension, and the motion 

is selfsimilar. 
If xi = x,, we have L = 1 when MJ = 1, and the detonation wave beomes simply a shock 

wave, while when M = MJ, I = 0 , it becomes the Chapman-Jouget wave. 
The laws of conservation at the surfaces of discontinuity for different values of the 

polytropic exponent on different sides /6/, make it possible to write the relation connecting 
the values of the parameters of the flows in regions 1 and 2 (V,, V, are the gas velocities 
behind the fronts relative to those in front of the fronts) 

(I.31 

In special cases the formulas yield relations connecting the parameters of the flows in 
regions 0 and 1. The formulas are obtained at L = 1 by replacing the subscripts 2 by 1, 1 
andDbyO,thesum p-ty by a;Wi, and W, are the stream velocities in the regions 1 and 
2 relative to the point of reflection N; fi is the angle by whichthe flow changes itsdirection 
during the passage through the incident front. The velocity Un is expressed in terms of the 
angle y: un = W&n (fi + y) and the angle Y is found from the cubic equation /3/. The 
velocity of the flow in region 2 relative to the wall is equal to 

VW = a&w, Mw = M,, (a,/a,) cosec a - M, M = We/a, (1.4) 

The above expression uses the positions of the points H and H' to determine the subsonic 
and supersonic case of diffraction , and in the latter case also the acute angle 0,s between 
the radius EG and the wall sec0s' = Mw, Mw> 1. If L = 1 and x1=x, = 1,4, then, as was 
shown in /2/, the point G cannot reach the point A. When b<i and x1 =x,<1,4, then as 
computations show, it is even more unlikely. 

Fig.2 shows the boundaries of the supersonic cases. In the coordinates poIpI, a with 
parameter Q=0.1;1;5;20, these are the regions APQ, BPQ, CPQ and DPQ. Every one of these 
regions is bounded by a line which branches off the corresponding boundary of regularity, and 
they all have a common segment of the boundary, i.e. the vertical segment PQ where P&J, = 0. 
We note that they correspond to the very strongly supercompressed waves on-ly. 

2. The boundary value problem. We attach the origin of the selfsimilar x,y coor- 
dinates to the point E, direct the T axis perpendicular to and y axis parallel to the 
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unperturbed reflected front. Thecoordinates are formed from 
the coordinates X, Y:z = (X - V,t)/(a,t), y = Y/(a,t) attached to the 
flow in front of the reflected front whose coordinate is 

x:=m=Msiny= 
1 + xpMda - (Md* - 1) 1% ‘h 

1+ xpMd'+ xl(Mda - l)rS (2.1) 

The parametersof the inhomogeneous gas flow in region 5, 
which are indicated by a bar, are 

Ji = pz + p', p = pz + p', D = V, + u', v = v' 

The primesdenoteperturbations, which can be replaced by 
the dimensionless functions 

p = p’I(p2a,2), p = p'lp,, u = u'la,, u = u'& 

The equation describing the curved segment of the reflected front, taking (2.1) into 
account, will be written in the form J: = m + f (Y) where f is a dimensionless function of 
order E. 

Below we shall assume for the time being, until the formulation has been completed and 
the solution of the problem constructed, that t# 0 is a finite quantity. Then, following 
the method used in /2/, we can obtain the following condition on the diffracting reflected 
front: 

(2.2) 
1 ‘21 = - 1 

us-- "+- MD(l-t P)f 
x2+1 a2 d 

P= 
“‘da -i- ’ +(y - *) ” ] Mo cf _yf’j 

Using the same transformations as in /2/, we obtain from these conditions the relations 

u = Ap, ycklay = Bapiay (2.3) 

A= 
i-c B=!?wC Cx 

( .Ud* - 1) 12 
- * 

m PI ’ _Md2 $~ 1 f (!UdP - 1) 12 

The system of equations of the unsteady , selfsimilar plane flow of gas is linearized 
with respect to the parameter E and transforms, after eliminating the functions P, 4 v, 
changing to polar coordinates z = rcos 0, y = rsin 6 and carrying out the Buseman transformation 

r = 2R41 + R2) , to the Laplace equation for the perturbation of the pressure p inside the 
unit circle. The curved segment AC of the detonation front maps onto an arc of the circle 

2R cos 0 = m (1 -I- R’) shown in Fig.1 by the dashed line, orthogonal to the circle R=l. The 
remaining elements of the boundary of the region of inhomogeneity do not change their con- 
figuration, but the correspondence of the points along the wall changes. 

The resulting curvilinear rectangle with sides intersecting orthogonally, is mapped using 
the conformal transformation 

z=*n 5---rpiez . 82--l 
j-eelpi& -z 2 

O1 = arc sin M-' - y, Cl2 = 7c - arc sin fiT1 - y 

into a rectangle in the plane z = c + ir (Fig.1) 

O<a<40<7<n 

1= +In*, q= 
1 -tgy(M’-ip 

t+tgypP-lf” 

(2.4) 

Here the bilinear function mapping the points marked with crosses in Fig.1 onto 0 and 00, 
first maps the region into a semicircle, and then the logarithmic function maps it into a 
rectangle. 

The points G and H in the z plane acquire the coordinates 

cs=+n 
1 -Ccos(ec--en) 
1 - ccl.5 (0, - el) ’ 

zc=o 

(Jo = 0, ~~ = arccos 
lfMM, 

M+Mw 

The boundary conditions on the wall @p/h = 0) and on the Mach arcs (aplh = 0 or a given 



pressure jump, and s is the coordinate along the contour) are the same as those in /2/. 
We can describe the whole system of boundary conditions, just as in the case of a shock 

wave, by the single relation 
I' (ilp'da) - Q (81, (77) .q (2.5) 

in which, when c ~~. 1, O< T < x I’:‘@ ; ii (r). s = 0; 1’ := 1, Q = 0, s = eM$ (1 - lVl&)% (T - t,1) -~ .S._S 

(r - 711) in the subsonic case (J1,2- < I), and S = F&J (fi'f&- - I)-' :6 (0 - CT(;) == ~+6 (O - UL.) in 
the supersonic case on the remaining part of the contour. The coefficient r)(r) and parameters 
m, appearing in it, have the following expressions: 

Relation (2.5) represents the boundary condition of the inhomogeneous Hilbert problem 
/7, 8/ for the function r =- ap.'ds - i(ll"aT with coefficientsthatare discontinuous at the 
points A and C. 

The solution sought must satisfy two more normalizing conditions (A?) and AI, are the 
differences in the values of 1: and p in the regions 2 and 3) 

the first of which is obtained from the second formula of (2.3), and the second of which is 
obvious. 

The above formulation of the problem is the same as in the case when no heat is supplied 
to the shock wave; however the heat occurs in the parameters appearing here through the laws 
of conservation on the detonation front. 

3. The pressure on the wall and along the front and the form of the front. 
The general solution of the boundary value problem formulated here was given in detail in /2/, 
and is therefore omitted. However, the expressions simplified below for the pressure dis- 
tribution along the diffracted front and along the wall, reflect the structure of this solution 
quite well. They have, respectively, the form 

The functions L and 5 are given in terms of the elliptic theta functions 6,,.. 6& whose 
modulus k depends on the quantity q (2.4) 

k2 = 1 _ /<", 2KF = z (1 - 2q + 2q4 - 34’ + . . . .)’ 

2K = n (1 + 2q + 2q4 + 2q9 + . .)* 

In the first expression of (3.1) the functions L and 5 have 1 + i-c as the argument at 
the image of the front, and in the second expression the quantity ir at the image of the wall. 
The quantity CJG serves as an argument on the image of the Mach arc (point G) in both 
expressions. The above functions are given by the formulas 

We have for the arguments 1+i7 and ir of the functions L and 5, the corresponding 
dependence of the theta function on t,q, and for the argument cr of IJ, q' (In q In q’ m= n’). The 
constant cO and the quantities constituting it are given by the formulas 

Here the theta functions in the expression for ET' depend on 7, (I> and in the expression 
for E,' on 0, 4’. The subscripts G and H on E indicate the transforms of the points towhich 
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the quantity g refers, and the subscripts u and z are variables over which the differen- 
tiation is carried out. The plus and minus subscripts correspond to the subsonic and super- 
sonic case respectively. 

The function A is given, according to /2/, at any point of the region (2.4) or of its 
contour, by the series 

A(z)=exp 96 c,hnz 
&slrnl' g, = - n_'[4 -(F," .f F,")_ 

(Fan + F,")i 

The sums F,” + F2n can be obtained from the recurrent formulas 

r;," -fi FC"=[(F;-'+ F;-') (Ha- I)- ZHA,+,(f - Dla)jG, 

n>z 

A,,-l=[A,,_, (H" - 1) -j- 2H (F;-* ;- F,"-2)]G;1, n > 3 

F, + Fz == 2(Hz - 1)/G,, A1 = 4HIG, 
G,,, = Hz i_ 1 + 2 ND,,,, H = I(M + mB)i(M - m,,)l”* 

(3.2) 

Formulas (3.2) will also yield the sum F,"i Fk", ifwe replace F, everywhere by f,,Ft 
by Fk,G, by Gs (the quantity Ai can be denoted by zi), and D1 by Dz. 

The quantities D1,, are given in terms of the initial parameters of the problem by the 
relations /2/ 

lI,,,= I- 
V++ [(I -me)* - 4mB [(f - m”) A - mB]]“* 

2[(1 -d)A-- mB] 

The coefficients c and f. defined by conditions (2.6) and the normalizing parameters c1 
and c, on which they depend, have the following expressions: 

C = z-1 Ic,I1,- c,z, - cg (1#Z& - I,Z,)l, I = f,lo, - IJS 

to (z,) = --xr'l*c-~z-' ICJ, - czz, - CO (lJS - Z,Z,)l 

+p+.q I,=py+, I,=&% 
0 0 0 

Here the theta functions depends on z, q. the functions il and f, on 1 -I- iz, the functions 
Y, 6, Y and r and the plus and minus subscripts refer to the right- and left-hand wall 
separated by the break. The relation y(r) appearing here has the form 

The components of the velocity v, and pressure p+ perturbations in regions 2 and 3 
can be found from the formulas (2.2) after we have satisfied ourselves with their linear 
dependence on the break E, or we can find them from the exact formulas by carrying out 
independent calculations of the reflection from the wall for each region in question. 

Assuming that the basic solution corresponds to either region 2 or 3 or to same inter- 
mediate regions corresponding to intermediate values of the angle of incidence a, we can 
find the perturbations in question from the following exact formulas: 

P-Jr = Cl (P**~PMPldPl) 
(3.3) 

v* = R&r* (a,*lap) cos (y - et) - Mw mm Y 

The subscript 00 indicates the basic flow, and &+ are the semi-angles of the breaks 
in the right and left half-wall relative to the wall at which we have the main flow; "+ 3 0 
if the right half-wall is turned clockwise, and E‘_ >O if the left half-wall is turned 
anticlockwise. 

The initial coordinate r at the wall is found from the formula r = I(M co37 - If/(&M - 

ces r)l I and is situated on ED (if T> arccosM_') or on EF fFig.1). 
The differential equation describing the diffracted segment of the detonation front is 

obtained by solving the second relation of (2.2) for f', differentiating the result with 
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respect to y and replacing du;dy according to (2.3) 

Integration with the conditions f (-?]a') :: lU' (-1~') = 0 where ;Ilnt’ = j-1 r/l- are the 
ends ofthe segment, of the transform of the diffracted segment of the detonation front (the 
basic flow coincides with the stream in region 2) and simple reduction, yield the function f 
in two forms 

f---B 5 (y-f)$$dt--_-By \ -ii,p(t)dt 
-,11- 1,,,, 

4. Simplification of the results. The study of detonation waves resembling in 
behaviour the Chapman-Jouget waves , encounters difficulties at the stage of deriving the 
conditions at the image of the detonation front (2.2). When linearizing the problem in s, 
we must expand the square root 

(4.1) 

occurring in the expressions for the 5 component of the velocity and pressure perturbations, 
where the functions f - yf’ of the order of F is determined by the solution of the problem, 
in a Taylor series. 

In order to estimate the possibility of carrying out the above expansion, and hence the 
admissibility of the solution for small 1, for convenience of the analysis, we firstsimplified 
it by expanding it in a series in powers of I. It is important that although the expansion 
was carried out in the neighbourhcod of 1 = 0, the solutions can be used at values of 1 
near, but not equal to it. The first power of 1 is retained in the solution. Omitting all 
intermediate calculations, we will give the result of simplifying the solution. 

The pressure on the wall is independent of L for small 1. Its distribution has the form 
(we conditionally assume that ~(0 at the half-wall DE (Fig.1)) 

The pressure varies along the curved segment of the detonation front according to the 

(4.2) 

law (the direction of the y axis corresponds to that in Fig.11 

Md + i 

P(Y)=P+ -g&--J i: ('t.3) 

(1 - J,“)“? - arctg ,&’ - I)(1 - y'*)]" 
(Ndl - l)% 1 

'- J (y’) 

y”+’ 
ill*2 - 1 

f&=(X* -+ I)----.- 
?Q:l/nZ + 1 

The term J(y’) (or the higher, zero order in L) is given by the formulas 

.T = - -$ (Mda - I)-2 (JI - J, -I- J3) 

J, = (Md4 + 1) arccos (-y'), J, = (Md4 - 1) y’ (1 - y’*)‘/* 

J, = 2Mz (arctg (As’&-‘(1 - y”)‘/*j - in], j = 

The form of the difracted detonation front obtained by simplifying (3.5), becomes 

f(y) = t + d * { y’ [ Miz arctg (iwdl&! - arcsin II'- 

x M&-l 
T--q-- 1- I 

arctg [(M,4 - i) (1 - y”)]“. 

(Md4-1p 
- (1 - y’*)‘/z 

1 

and we must omit t2 from the expression for F from (3.4). 
We see from expression (4.1) that the following expression is necessary for estimating 

the admissibility of the solution: 



f-yy=1 
Av ,, Md=F 
-yTm M,= - 1) .[ 

arctg [(Mad - 1) (1 - Y")l"' 

(Md-li)"* - 
y”)‘/. 3 
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(4.4) 

5. Domain of admissibility of the solution. It is desirable to represent this 
domain as clearly and explicitly as possible. The non-linear normalization of the solution 
represents, in this case, a substantial obstruction. The value of the criterion 7V of any 
solution can only be found if the particular version is known. We must have the function 

f - Yf' with hv as a factor. It is therefore natural that we should turn to the linear 
relation connecting Au and E, using the formula (4.4) to obtain f - Yf’. 

We can find AU from the second formula of (2.2) if we know the inclinations of the 
front at the extremal points of its curved segment, and these can be obtained using Cardan's 
formulas to solve a cubic equation. The linearization here is found to be very cumbersome 
and unsuitable for use in the most important symmetric case when the plane of symmetry of the 
blunt wedge formed by the break in the wall is perpendicular to the front of the incident 
shock wave. For this reason the boundary of the domain of admissibility is determined, in the 
symmetric case, by establishing a relation connecting Au with E directly and independently 
of (2.2). 

In the present case, having obtained the expression for the velocity of the reflected 
wave front relative to the wall in the form UD - V, COS(E + E’) where 8' istheangle between 
the front and the wall, we can write the conditions of regular reflection and of conservation 
of the velocity component tangent to the reflected front, in the form 

IUD - VI COS (E + E')] Cosec E’ 

V’ COS E’ 

= U, cosec E. V, sin (E + e') = 

and this will yield the formulas 

(5.1) 

The expression for the quantity MD which is necessary here is obtained from the third 
relation of (1.3), and the magnitude of the formally determined velocity V, is found to be 
the sum of V, and of the quantities of second order of smallness. After solving the result- 
ing relation for MD, we can write the latter in the form 

Finally we find from (1.3) U,ia, = M,a,la,. 
To findthecondition of admissibility, we must choose y to be equal to zero, since 

1 f - yf’ ) has a maximum at y = 0: (f - yf’)’ = -yf” = 0 and the derivative f” has no zeros at 

-m’ < y < m’. From (4.4) we see that f- yf’= 0 when y = _&rn’, therefore the maximum 

if-Yf'i will be the largest value in the interval in question. The boundary of the domain 
of admissibility is found from (4.1) and the condition 

N (f - yf’)/P = R = h (5.3) 

We can take for the concave and convex breaks h = 1 and h = -0.5 according to the 
sign of f-yf’ (see (4.1)). The relative error in computing the roots 
is found to be the same and equal to 31/2/4= 0.06. 

(1 & h)lJs= 1 _t h/2 

substituting successively into (5.3) f-yf’ lyco from (4.4), @aala, and M, from (5.1) 
and MD (5.2), neglecting the higher orders of 1 in the expressions for N (4.1) and F (3.4) 
and solving the resulting relation for 1% we obtain the boundary of the domain of admissi- 
bility (equality sign) and the domain itself 

(%,MD* + i) (M,$ + I) arctg(Md'- 1) 

h.(Md--11)s 
-1 x 1 

-Jg- (MD - MI)] 
(5.4) 

Fig.3 shows the graph oftheinverse of (5.4) against 1140, andthreeboundaries of admissi- 
bility in coordinates I,&' for values of MO equal to 1.3, 1.5 and 5, with the latter value 
practically valid for all M,> 5. For small values of t they are extended 5 times along the 
E? axis. The solutions are admissible to the right of, and below these boundaries. In the 
case of convex breaks (A. = 0.5) the admissible angle of break is twice as small as that in 
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the case of a concave break 0% = 1). 

6. Some conclusions. The second, basic term in the expression for pressure distri- 
bution along the detonation front (4.3) is of the order of -1 in t, that this implies that 
the solution, in the case when E and 1 are mutually independent , can be real only for finite 
L, i.e. when the waves are supercompressed. 

However, as soon as we approach the Chapman-Jouget conditions at small E, the quantity 
&/b3, according to the condition of admissibility (5.4), will be of the order of unity and 

the factor Svi~ will ensure that this term will be of second order in I. The solution will 
remain valid. 

When considering the symmetric case, we see at once that the total pressure perturbation 
along the diffracted segment of the front is independent of 1. Integrating the right-hand 
side of (4.3), we obtain 

The distribution ofthepressure perturbation along the wall (4.2) is independent of I 
for small I. Both of these facts are true, since we can show that Mw, Au, Ap and Y - O(l'). 

For the symmetric case (a = y = 0) we can obtain this from formula (3.3) by writing the 
expression for aJa, from (1.4)) as well as from (1.3). When Y+ 0, we must bring in a 
cubic equation for tg(n. + y) /3/. Treating this as an implicit function y of L, wecansee 

that yL' = 0 . However,in/3/wehaveaheatsupplyinsteadof t, i.e. wemustcarryoutthe substi- 
tution according to (1.1) and (1.2). 

In the special, symmetric case, the distribution in question is identical with one given 
in /l/ for acoustic waves. When there is no symmetry, other terms appear corresponding to a 
flow of finite velocity and finite pressure difference at the walls Ap#O, past an obtuse 
wedse. 

E n. 2 

0. / 

0 

Fig.3 Fig.4 

The condition of admissibility and analysis of the calculations for a number of diffrac- 
tion versions show, that a range of values of L exists, in which the parameter is not so 
small that the solution will become invalid for a given E, but sufficiently small for the 
straightforward solution linearized over L to agree satisfactorily with the initial solution. 

The last statement is illustrated in Fig.4, which gives a comparison of the simplified 
solution (the dashed lines) and the non-simplified solution (the solid lines) for the case 
when the detonation wave is obviously supercompressed: L= O.Bi9. The (concave) angle of break 
is equal to Ezz __9" and we have Q = 2.1; p/p0 = 8.33; p2/p, = 5.76; a = 26.5". The quantity z is equal 
to 0.978, i.e. the set of initial parameters corresponds to a position near the boundary of 
admissibility. Curves a and b depict the pressure at the wall and along the front, and c is 
the shape of the front. When 1<0.25 and e<0.5O, the curves depicting the pressures and 
the shape of the front, practically coincide. 

1. 
2. 

3. 

4. 

5. 

6. 
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THE PLANE PROBLEM OF HYDROELASTIC STABILITY FOR A HINGE-SUPPORTED PLATE* 

B.YA. KANTOR and M.P. KVITNITSKII 

The plane problem of hydroelasticity on the stability of a hinge-supported 
plate of infinite span placed in a rigid screen is considered in the case 
of unilateral flow of an ideal incompressible fluid. An analytical 
representation is obtained for the matrix elements of the averaged aero- 
dynamic loads. The possibility of using the method reduction in the 
problem under consideration , i.e., of replacing the infinite determinant 
by a truncated determinant is investigated. Relations are obtained for 
the flutter velocity as a function of the hydroelasticity and axial force 
parameters. The problem under consideration was solved in /l-3/ by 
different methods, where, by assuming the convergence of the infinite 
determinant to which application of the Bubnov-Galerkin method leads, 
consideration was confined to two coordinate functions and the forces 
acting on the fluid side were determined numerically. Only the boundary 
of the static stability domain was found. 

1. Formulation of the hydroelasticity problem. We will write the equation of the 
cylindrical vibrations of a plate extended in the stream direction by forces H as follows: 

DW,,, - Hw,, + shp,m, + hp,w,, = P ("1.1) 

Here w (r, t) and p(r,t) are the plate deflection and the fluid pressure thereon, D 

is the bending stiffness, E isthedamping coefficient, h is the thickness, and pO is the 
specific density of the plate material. 

The hinge clamping boundary conditions at the points x -;&a have the form 

w = wx* = 0 (1.2) 

The potential of the perturbed fluid velocities @((t,z, t) satisfies the Laplace equation, 
the damping condition, and the non-penetration condition 

@,, + CL2 = 0, z< 0 (1.3) 

lim VQ = 0, r, = l/w (1.4) 7*-m 
0'; = w1 + VW,, z E L-a; al. z = 0 (1.5) 

&= 0, x@ [-a;al, 2 = 0 

Here V is the velocity of unperturbed fluid motion. 
Using the representation of a harmonic function in the form of the potential difference 

of a simple and double layer (for instance /4/I, and taking into account that the cosine of 
the angle between the tangent plane and the normal to the surface z = w(x, t) is small com- 
pared with unity, we obtain by virtue of (1.5) 
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